Source code for redisvl.utils.vectorize.text.huggingface

from typing import Any, Callable, List, Optional

from pydantic.v1 import PrivateAttr

from redisvl.utils.vectorize.base import BaseVectorizer


[docs] class HFTextVectorizer(BaseVectorizer): """The HFTextVectorizer class is designed to leverage the power of Hugging Face's Sentence Transformers for generating text embeddings. This vectorizer is particularly useful in scenarios where advanced natural language processing and understanding are required, and ideal for running on your own hardware (for free). Utilizing this vectorizer involves specifying a pre-trained model from Hugging Face's vast collection of Sentence Transformers. These models are trained on a variety of datasets and tasks, ensuring versatility and robust performance across different text embedding needs. Additionally, make sure the `sentence-transformers` library is installed with `pip install sentence-transformers==2.2.2`. .. code-block:: python # Embedding a single text vectorizer = HFTextVectorizer(model="sentence-transformers/all-mpnet-base-v2") embedding = vectorizer.embed("Hello, world!") # Embedding a batch of texts embeddings = vectorizer.embed_many(["Hello, world!", "How are you?"], batch_size=2) """ _client: Any = PrivateAttr() def __init__( self, model: str = "sentence-transformers/all-mpnet-base-v2", **kwargs ): """Initialize the Hugging Face text vectorizer. Args: model (str): The pre-trained model from Hugging Face's Sentence Transformers to be used for embedding. Defaults to 'sentence-transformers/all-mpnet-base-v2'. Raises: ImportError: If the sentence-transformers library is not installed. ValueError: If there is an error setting the embedding model dimensions. """ self._initialize_client(model) super().__init__(model=model, dims=self._set_model_dims()) def _initialize_client(self, model: str): """Setup the HuggingFace client""" # Dynamic import of the cohere module\ try: from sentence_transformers import SentenceTransformer except ImportError: raise ImportError( "HFTextVectorizer requires the sentence-transformers library. " "Please install with `pip install sentence-transformers`" ) self._client = SentenceTransformer(model) def _set_model_dims(self): try: embedding = self._client.encode(["dimension check"])[0] except (KeyError, IndexError) as ke: raise ValueError(f"Empty response from the embedding model: {str(ke)}") except Exception as e: # pylint: disable=broad-except # fall back (TODO get more specific) raise ValueError(f"Error setting embedding model dimensions: {str(e)}") return len(embedding)
[docs] def embed( self, text: str, preprocess: Optional[Callable] = None, as_buffer: bool = False, **kwargs, ) -> List[float]: """Embed a chunk of text using the Hugging Face sentence transformer. Args: text (str): Chunk of text to embed. preprocess (Optional[Callable], optional): Optional preprocessing callable to perform before vectorization. Defaults to None. as_buffer (bool, optional): Whether to convert the raw embedding to a byte string. Defaults to False. Returns: List[float]: Embedding. Raises: TypeError: If the wrong input type is passed in for the text. """ if not isinstance(text, str): raise TypeError("Must pass in a str value to embed.") if preprocess: text = preprocess(text) dtype = kwargs.pop("dtype", None) embedding = self._client.encode([text], **kwargs)[0] return self._process_embedding(embedding.tolist(), as_buffer, dtype)
[docs] def embed_many( self, texts: List[str], preprocess: Optional[Callable] = None, batch_size: int = 1000, as_buffer: bool = False, **kwargs, ) -> List[List[float]]: """Asynchronously embed many chunks of texts using the Hugging Face sentence transformer. Args: texts (List[str]): List of text chunks to embed. preprocess (Optional[Callable], optional): Optional preprocessing callable to perform before vectorization. Defaults to None. batch_size (int, optional): Batch size of texts to use when creating embeddings. Defaults to 10. as_buffer (bool, optional): Whether to convert the raw embedding to a byte string. Defaults to False. Returns: List[List[float]]: List of embeddings. Raises: TypeError: If the wrong input type is passed in for the test. """ if not isinstance(texts, list): raise TypeError("Must pass in a list of str values to embed.") if len(texts) > 0 and not isinstance(texts[0], str): raise TypeError("Must pass in a list of str values to embed.") dtype = kwargs.pop("dtype", None) embeddings: List = [] for batch in self.batchify(texts, batch_size, preprocess): batch_embeddings = self._client.encode(batch, **kwargs) embeddings.extend( [ self._process_embedding(embedding.tolist(), as_buffer, dtype) for embedding in batch_embeddings ] ) return embeddings
@property def type(self) -> str: return "hf"